Return to 合成関数の偏微分法

2次元のラプラシアンを極座標で表す

合成関数の偏微分の応用として,(デカルト座標で定義された)2次元のラプラシアン $\nabla^2 = \dfrac{\partial^2}{\partial x^2} + \dfrac{\partial^2}{\partial y^2}$ を極座標 $r, \phi$ を使って表してみる。

2次元のラプラシアン

2次元のラプラシアンはデカルト座標 $x, y$ の2階偏微分で以下のように定義される:

$$\nabla^2 \equiv \dfrac{\partial^2}{\partial x^2} + \dfrac{\partial^2}{\partial y^2}$$

2次元極座標

2次元デカルト座標 \(x, y\) から極座標 \(r, \phi\) への座標変換(つまり元の座標 \(x, y\) を使って新しい座標 \(r, \phi\) を表す式)は

\begin{eqnarray}
r &=& \sqrt{x^2 + y^2} \\
\phi &=& \tan^{-1} \frac{y}{x}
\end{eqnarray}

その逆変換(つまり新しい座標 \(r, \phi\) を使って元の座標 \(x, y\) を表す式)は,

\begin{eqnarray}
x &=&  r \cos\phi\\
y &=&  r \sin\phi
\end{eqnarray}

1階偏微分を極座標で書き直す

すでに「例題:2次元極座標」で以下の偏導関数を計算している。すぐに使うのでここにまとめて書き出しておく。

\begin{eqnarray}
\frac{\partial r}{\partial x} &=& \cos\phi \\
\frac{\partial r}{\partial y} &=& \sin\phi \\
\frac{\partial \phi}{\partial x} &=& -\frac{\sin\phi}{r} \\
\frac{\partial \phi}{\partial y} &=& \frac{\cos\phi}{r}
\end{eqnarray}

\begin{eqnarray}
\therefore\ \ \frac{\partial }{\partial x} &=& \frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \phi}{\partial x}\frac{\partial}{\partial \phi} \\
&=& \cos\phi \frac{\partial}{\partial r} -\frac{\sin\phi}{r}\frac{\partial}{\partial \phi} \\
\therefore\ \ \frac{\partial }{\partial y} &=& \frac{\partial r}{\partial y}\frac{\partial}{\partial r} + \frac{\partial \phi}{\partial y}\frac{\partial}{\partial \phi} \\
&=& \sin\phi \frac{\partial}{\partial r} +\frac{\cos\phi}{r}\frac{\partial}{\partial \phi}
\end{eqnarray}

2階偏微分を極座標で書き直す

\begin{eqnarray}
\frac{\partial^2}{\partial x^2} &=& \left( \cos\phi \frac{\partial}{\partial r} -\frac{\sin\phi}{r}\frac{\partial}{\partial \phi}\right)\left( \cos\phi \frac{\partial}{\partial r} -\frac{\sin\phi}{r}\frac{\partial}{\partial \phi}\right) \\
&=& \left( \cos\phi \frac{\partial}{\partial r}\right)\left( \cos\phi \frac{\partial}{\partial r}\right) \\
&& -\left( \cos\phi \frac{\partial}{\partial r}\right)\left(\frac{\sin\phi}{r}\frac{\partial}{\partial \phi}\right) \\
&&-\left(\frac{\sin\phi}{r}\frac{\partial}{\partial \phi}\right)\left( \cos\phi \frac{\partial}{\partial r}\right)\\
&&+\left(\frac{\sin\phi}{r}\frac{\partial}{\partial \phi}\right)\left(\frac{\sin\phi}{r}\frac{\partial}{\partial \phi}\right) \\
&=& \cos^2\phi \frac{\partial^2}{\partial r^2} \\
&&+\cos\phi \frac{\sin\phi }{r^2} \frac{\partial }{\partial \phi} – \cos\phi \frac{\sin\phi}{r}\frac{\partial^2}{\partial r \partial\phi}\\
&&+\frac{\sin\phi}{r} \sin\phi \frac{\partial}{\partial r} -\frac{\sin\phi}{r}\cos\phi \frac{\partial^2}{\partial r\partial \phi}\\
&&+\frac{\sin\phi}{r} \frac{\cos\phi}{r} \frac{\partial}{\partial\phi} + \frac{\sin^2\phi}{r^2} \frac{\partial^2}{\partial \phi^2} \\
&=& \cos^2\phi \frac{\partial^2}{\partial r^2} + \frac{\sin^2\phi}{r} \frac{\partial}{\partial r} -\frac{2\sin\phi\cos\phi}{r} \frac{\partial^2}{\partial r \partial \phi} \\
&&+\frac{\sin^2}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{2\sin\phi \cos\phi}{r^2} \frac{\partial}{\partial\phi}
\end{eqnarray}

\begin{eqnarray}
\frac{\partial^2}{\partial y^2} &=& \left( \sin\phi \frac{\partial}{\partial r} +\frac{\cos\phi}{r}\frac{\partial}{\partial \phi}\right)\left( \sin\phi \frac{\partial}{\partial r} +\frac{\cos\phi}{r}\frac{\partial}{\partial \phi}\right) \\
&=& \cdots \\
&=& \sin^2\phi \frac{\partial^2}{\partial r^2} + \frac{\cos^2\phi}{r} \frac{\partial}{\partial r} +\frac{2\sin\phi\cos\phi}{r} \frac{\partial^2}{\partial r \partial \phi} \\
&&+\frac{\cos^2}{r^2} \frac{\partial^2}{\partial \phi^2} -\frac{2\sin\phi \cos\phi}{r^2} \frac{\partial}{\partial\phi}
\end{eqnarray}

2次元のラプラシアンを極座標で

\begin{eqnarray}
\therefore\ \ \nabla^2 = \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2} &=& \frac{\partial^2}{\partial r^2} +\frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2}
\end{eqnarray}