Return to 参考:初等関数のグラフを描く

参考:Maxima で初等関数のグラフを描く

draw2d()

draw2d() は,関数の分母がゼロになったりしても文句を言わずにグラフを描く。

べき関数

$y = x^{-2}, \ x^{-1}, \ x^2, \ x^3$ のグラフ例。

In [1]:
draw2d(
  line_width = 2,
  color = 1, key = "x^{-2}",
  explicit(x**(-2), x, -5, 5),
  color = 2, key = "x^{-1}",
  explicit(x**(-1), x, -5, 5),
  color = 3, key = "x^{2}",
  explicit(x**2, x, -5, 5),
  color = 4, key = "x^{3}",
  explicit(x**3, x, -5, 5), 
  
  xrange = [-5, 5], yrange = [-5, 5], 
  xtics = 1, ytics = 1, xaxis = true, yaxis = true, 
  grid = true
)$

$\displaystyle y = \sqrt{x}, \ \frac{1}{\sqrt{x}}$ のグラフ例。

In [2]:
draw2d(
  line_width = 2,
  color = 1, key = "x^{1/2}",
  explicit(sqrt(x), x, 0, 5),
  color = 2, key = "x^{-1/2}",
  explicit(1/sqrt(x), x, 0, 5),
  
  xrange = [0, 5], yrange = [0, 5], 
  xtics = 1, ytics = 1, xaxis = true, yaxis = true, 
  grid = true
)$

指数関数

$y = e^{-x}, \ e^x$ のグラフ例。

In [3]:
draw2d(
  line_width = 2,
  color = 1, key = "e^{-x}",
  explicit(exp(-x), x, -5, 5),
  color = 2, key = "e^{x}",
  explicit(exp(x), x, -5, 5),
  
  xrange = [-5, 5], yrange = [-0.1, 5], 
  xtics = 1, ytics = 1, xaxis = true, yaxis = true, 
  grid = true
)$

三角関数

$ y = \sin x, \ \cos x, \ \tan x $ のグラフ例。

In [4]:
draw2d(
  line_width = 2,
  color = 1, key = "sin x",
  explicit(sin(x), x, -2*%pi, 2*%pi),
  color = 2, key = "cos x",
  explicit(cos(x), x, -2*%pi, 2*%pi),
  color = 3, key = "tan x",
  explicit(tan(x), x, -2*%pi, 2*%pi),
  
  xrange = [-2*%pi, 2*%pi], yrange = [-3, 3], 
  xtics = %pi/2, ytics = 1, xaxis = true, yaxis = true, 
  grid = true, 
  user_preamble = "set format x '%3.1P π'; set key sample 0.5;"
)$

逆三角関数

$y = \sin^{-1} x = \arcsin x =$ asin(x) の定義域は $-1 \leq x \leq 1$
$y = \cos^{-1} x = \arccos x =$ acos(x) の定義域は $-1 \leq x \leq 1$
$y = \tan^{-1} x = \arctan x =$ atan(x) の定義域は $-\infty < x < \infty$

In [5]:
draw2d(
  line_width = 2,
  color = 1, key = "sin^{-1} x",
  explicit(asin(x), x, -1, 1),
  color = 2, key = "cos^{-1} x",
  explicit(acos(x), x, -1, 1),
  
  xrange = [-1, 1], yrange = [-%pi/2, %pi], 
  xtics = 0.5, ytics = %pi/4, xaxis = true, yaxis = true, 
  grid = true, 
  user_preamble = "set format y '%4.2P π'; set key sample 1;"
)$

In [6]:
draw2d(
  line_width = 2,
  key = "tan^{-1} x",
  explicit(atan(x), x, -10, 10),
  
  xrange = [-10, 10], yrange = [-%pi/2, %pi/2], 
  xtics = 2, ytics = %pi/4, xaxis = true, yaxis = true, 
  grid = true, 
  user_preamble = "set format y '%4.2P π'; set key top left;"
)$

双曲線関数

$y = \sinh x, \ \cosh x, \ \tanh x$ のグラフ例。

In [7]:
draw2d(
  line_width = 2,
  color = 1, key = "sinh x",
  explicit(sinh(x), x, -4, 4),
  color = 2, key = "cosh x",
  explicit(cosh(x), x, -4, 4),
  
  xrange = [-4, 4], yrange = [-30, 30], 
  xtics = 1, ytics = 10, xaxis = true, yaxis = true, 
  grid = true, 
  user_preamble = "set key top left;"
)$

In [8]:
draw2d(
  line_width = 2,
  key = "tanh x",
  explicit(tanh(x), x, -5, 5),
  
  xrange = [-5, 5], yrange = [-1, 1], 
  xtics = 1, ytics = 0.2, xaxis = true, yaxis = true, 
  grid = true, 
  user_preamble = "set key top left;"
)$

逆双曲線関数

$ y = \sinh^{-1} x = \mbox{arsinh}\ x = $ asinh(x) $= \log\left(x+\sqrt{x^2+1}\right)$
$ y = \cosh^{-1} x = \mbox{arcosh}\ x = $ acosh(x) $= \log\left(x+\sqrt{x^2-1}\right)$
$ y = \tanh^{-1} x = \mbox{artanh}\ x = $ atanh(x) $\displaystyle = \frac{1}{2} \log\left(\frac{1+x}{1-x}\right)$

In [9]:
draw2d(
  line_width = 2,
  key = "sinh^{-1} x",
  explicit(asinh(x), x, -5, 5),
  
  xrange = [-5, 5], yrange = [-3, 3], 
  xtics = 1, ytics = 1, xaxis = true, yaxis = true, 
  grid = true, 
  user_preamble = "set key top left;"
)$

In [10]:
draw2d(
  line_width = 2,
  key = "cosh^{-1} x",
  explicit(acosh(x), x, 1, 5),
  
  xrange = [1, 5], yrange = [0, 3], 
  xtics = 1, ytics = 1, xaxis = true, yaxis = true, 
  grid = true, 
  user_preamble = "set key top left;"
)$

In [11]:
draw2d(
  line_width = 2,
  key = "tanh^{-1} x",
  explicit(atanh(x), x, 0, 1),
  
  xrange = [0, 1], yrange = [0, 3], 
  xtics = auto, ytics = 1, xaxis = true, yaxis = true, 
  grid = true, 
  user_preamble = "set key top left;"
)$

plot2d()

plot2d() は,関数の分母がゼロになったりすると文句を言いながらグラフを描く。

べき関数

$y = x^{-2}, \ x^{-1}, \ x^2, \ x^3$ のグラフ例。

In [13]:
plot2d(
  [x**(-2), x**(-1), x**2, x**3], [x, -5, 5], 
  [style, [lines, 2], [lines, 2], [lines, 2], [lines, 2]], 
  
  [y, -5, 5], grid2d, [xtics, 1], [ytics, 1]
)$
plot2d: expression evaluates to non-numeric value somewhere in plotting range.
plot2d: expression evaluates to non-numeric value somewhere in plotting range.

$\displaystyle y = \sqrt{x}, \ \frac{1}{\sqrt{x}}$ のグラフ例。

In [14]:
plot2d(
  [sqrt(x), 1/sqrt(x)], [x, 0, 5], 
  [style, [lines, 2], [lines, 2]], 
  
  [y, 0, 5], grid2d, [xtics, 1], [ytics, 1]
)$
plot2d: expression evaluates to non-numeric value somewhere in plotting range.

指数関数

$y = e^{-x}, \ e^x$ のグラフ例。

In [15]:
plot2d(
  [exp(-x), exp(x)], [x, -5, 5], 
  [style, [lines, 2], [lines, 2]], 
  [legend, "exp(-x)", "exp(x)"], 
  
  [y, -0.1, 5], grid2d, [xtics, 1], [ytics, 1]
)$

三角関数

$ y = \sin x, \ \cos x, \ \tan x $ のグラフ例。

In [16]:
plot2d(
  [sin(x), cos(x), tan(x)], [x, -2*%pi, 2*%pi], 
  [style, [lines, 2], [lines, 2], [lines, 2]], 
  [legend, "sin x", "cos x", "tan x"], 
  
  [y, -3, 3], grid2d, [xtics, %pi/2], [ytics, 1], 
  [gnuplot_preamble, "set format x '%3.1P π';set key sample 0.2;"]
)$

逆三角関数

$y = \sin^{-1} x = \arcsin x =$ asin(x) の定義域は $-1 \leq x \leq 1$
$y = \cos^{-1} x = \arccos x =$ acos(x) の定義域は $-1 \leq x \leq 1$
$y = \tan^{-1} x = \arctan x =$ atan(x) の定義域は $-\infty < x < \infty$

In [17]:
plot2d(
  [asin(x), acos(x)], [x, -1, 1], 
  [style, [lines, 2], [lines, 2]], 
  [legend, "arcsin x", "arccos x"], 
  
  [y, -%pi/2, %pi], grid2d, [xtics, 0.5], [ytics, %pi/4], 
  [gnuplot_preamble, "set format y '%4.2P π';"]
)$

In [18]:
plot2d(
  atan(x), [x, -10, 10], 
  [style, [lines, 2]], 
  [legend, "arctan x"], 
  
  [y, -%pi/2, %pi/2], grid2d, [xtics, 2], [ytics, %pi/4], 
  [gnuplot_preamble, "set format y '%4.2P π';set key top left;"]
)$

双曲線関数

$y = \sinh x, \ \cosh x, \ \tanh x$ のグラフ例。

In [19]:
plot2d(
  [sinh(x), cosh(x)], [x, -4, 4], 
  [style, [lines, 2], [lines, 2]], 
  
  [y, -30, 30], grid2d, [xtics, 1], [ytics, 10], 
  [gnuplot_preamble, "set key top left;"]
)$

In [20]:
plot2d(
  tanh(x), [x, -5, 5], 
  [style, [lines, 2]], 
  
  [y, -1, 1], grid2d, [xtics, 1], [ytics, 0.2], 
  [gnuplot_preamble, "set key top left;"]
)$

逆双曲線関数

$ y = \sinh^{-1} x = \mbox{arsinh}\ x = $ asinh(x) $= \log\left(x+\sqrt{x^2+1}\right)$
$ y = \cosh^{-1} x = \mbox{arcosh}\ x = $ acosh(x) $= \log\left(x+\sqrt{x^2-1}\right)$
$ y = \tanh^{-1} x = \mbox{artanh}\ x = $ atanh(x)
$\displaystyle = \frac{1}{2} \log\left(\frac{1+x}{1-x}\right)$

In [21]:
plot2d(
  asinh(x), [x, -5, 5], 
  [style, [lines, 2]], 
  
  [y, -3, 3], grid2d, [xtics, 1], [ytics, 1], 
  [gnuplot_preamble, "set key top left;"]
)$

In [22]:
plot2d(
  acosh(x), [x, 1, 5], 
  [style, [lines, 2]], 
  
  [y, 0, 3], grid2d, [xtics, 1], [ytics, 1], 
  [gnuplot_preamble, "set key top left;"]
)$

In [23]:
plot2d(
  atanh(x), [x, 0, 1], 
  [style, [lines, 2]], 
  
  [y, 0, 3], grid2d, [xtics, 0.2], [ytics, 1], 
  [gnuplot_preamble, "set key top left;"]
)$
plot2d: expression evaluates to non-numeric value somewhere in plotting range.