$\Omega_{\Lambda} = 0$ の場合
$$H_0 t_0 = -\frac{1}{\Omega_{\rm m} -1}+\frac{\Omega_{\rm m}}{(\Omega_{\rm m}-1)^{\frac{3}{2}} }
\tan^{-1}\sqrt{\Omega_{\rm m}-1} \quad \mbox{for}\ \ \Omega_{\rm m} > 1$$$$H_0 t_0 = \frac{1}{1-\Omega_{\rm m}}-\frac{\Omega_{\rm m}}{(1-\Omega_{\rm m})^{\frac{3}{2}} }
\tanh^{-1}\sqrt{1-\Omega_{\rm m}} \quad \mbox{for}\ \ \Omega_{\rm m} < 1$$
$\Omega_{\rm m} \rightarrow \Omega$ として…
/* Omega > 1 */
t1(Omega):= -1/(Omega-1) + Omega/((Omega-1)*sqrt(Omega-1)) * atan(sqrt(Omega-1));
/* Omega < 1 */
t2(Omega):= 1/(1-Omega) - Omega/((1-Omega)*sqrt(1-Omega)) * atanh(sqrt(1-Omega));
/* Omega = 1 */
t0(Omega):= 2/3;
t(Omega):= if Omega > 1 then t1(Omega) elseif Omega = 1 then t0(Omega) else t2(Omega);
$k = 0$ の場合
$$H_0 t_0 = \frac{2}{3\sqrt{\Omega_{\rm m} -1}}\tan^{-1} \sqrt{\Omega_{\rm m} -1} \quad \mbox{for}\ \ \Omega_{\rm m} > 1$$$$H_0 t_0 = \frac{2}{3\sqrt{1-\Omega_{\rm m} }}\tanh^{-1} \sqrt{1-\Omega_{\rm m} } \quad \mbox{for}\ \ \Omega_{\rm m} < 1$$
$\Omega_{\rm m} \rightarrow \Omega$ として…
/* Omega > 1 */
T1(Omega):= 2/(3*sqrt(Omega-1)) * atan(sqrt(Omega-1));
/* Omega < 1 */
T2(Omega):= 2/(3*sqrt(1-Omega)) * atanh(sqrt(1-Omega));
T(Omega):= if Omega > 1 then T1(Omega) elseif Omega = 1 then t0(Omega) else T2(Omega);
plot2d()
で描く例
plot2d(
[T(Omega), t(Omega)], [Omega, 0.01, 2],
/* 表示範囲 */
[y, 0.5, 1.5],
/* グリッド */
grid2d,
[gnuplot_preamble, "set xtics 0.2; set mxtics 2;
set ytics 0.1; set mytics 2;"],
/* 凡例 */
[legend, "Ω_Λ = 1 - Ω_m", "Ω_Λ = 0"],
/* 線の太さと色 */
[style, [lines, 2, red], [lines, 2, black]],
/* 座標軸のラベル */
[xlabel, "Ω_m"], [ylabel, "H_0 t_0"],
/* グラフのタイトル */
[title, "宇宙年齢の密度パラメータ依存性"]
)$
draw2d()
で描く例
draw2d(
font = "Arial", font_size = 14,
title = "{/=16 宇宙年齢の密度パラメータ依存性}",
xlabel = "{/Times=16 Ω_m}",
ylabel = "{/jsMath-cmti10=16 H}_0 {/jsMath-cmti10=16 t}_0",
yrange = [0.5, 1.5],
user_preamble = "set xtics 0.2; set mxtics 2;
set ytics 0.1; set mytics 2;
set xtics mirror; set ytics mirror; set grid;",
line_width = 2,
color = "red", key = "{/Times=16 Ω_Λ = 1 - Ω_m}",
explicit(T(Omega), Omega, 0.01, 2),
color = "black", key = "{/Times=16 Ω_Λ = 0}",
explicit(t(Omega), Omega, 0.01, 2)
)$